Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 513: 60

Answer

$$\int_1^e\frac{1-\ln{x}}{x}\hspace{0.5mm}dx=\frac{1}{2}$$

Work Step by Step

Let $u=1-\ln{x}$ then $du=-\frac{1}{x}\hspace{1mm}dx$, and therefore $-xdu=dx$. Substituting this into our integral we get $\int-\frac{u}{x}xdu=-\int u\hspace{0.5mm}du=-\frac{u^2}{2}+C=-\frac{(1-\ln{x})^2}{2}+C$ Plugging in our integration limits and ignoring our constant of integration we get $-\frac{(1-\ln{x})^2}{2}\bigg\vert_1^e=-\frac{(1-\ln{e})^2}{2}-\left(-\frac{(1-\ln{1})^2}{2}\right)=\frac{(1-0)^2}{2}-\frac{(1-1)^2}{2}=\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.