Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 513: 71

Answer

$$\tan x - \sec x + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{1 + \sin \theta }}} d\theta \cr & {\text{Multiply the numerator and denominator by }}1 - \sin \theta \cr & = \int {\frac{1}{{1 + \sin \theta }}} \left( {\frac{{1 - \sin \theta }}{{1 - \sin \theta }}} \right)d\theta \cr & = \int {\frac{{1 - \sin \theta }}{{1 - {{\sin }^2}\theta }}} d\theta \cr & {\text{Recall that si}}{{\text{n}}^2}x + {\cos ^2}x = 1 \cr & = \int {\frac{{1 - \sin \theta }}{{{{\cos }^2}x}}} d\theta \cr & = \int {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{{\sin \theta }}{{{{\cos }^2}x}}} \right)} d\theta \cr & = \int {\left( {{{\sec }^2}x - \sec x\tan x} \right)} d\theta \cr & {\text{Integrating}} \cr & = \tan x - \sec x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.