Answer
$y=16x-4e^{2x}+\frac1 4 e^{4x}+C$
Work Step by Step
$\frac{dy}{dx}=(4-e^{2x})^2$
$dy=(4-e^{2x})^2)dx$
$\int dy=\int (4-e^{2x})^2)dx$
$y+C=\int (16-8e^{2x}+e^{4x})dx$
$u=2x, \frac 1 2 du=dx, v=4x, \frac 1 4 dv=dx$
$y+C= \int 16dx -8\int e^u \frac 1 2 du+ \int e^v \frac 1 4 dv$
$y+C=16x-4e^u+\frac 1 4 e^v+C$
$y=16x-4e^{2x}+\frac1 4 e^{4x}+C$