Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 513: 68

Answer

$\int_0^\frac{\pi}{2}sin2xdx=1$

Work Step by Step

$y=sin2x$, find the area of the region on the interval $(0,\frac{\pi}{2})$ $\int_0^\frac{\pi}{2}sin2xdx$ Let $u=2x$ $\frac{du}{dx}=2$ $dx=\frac{1}{2}du$ $=\frac{1}{2}\int_0^\frac{\pi}{2}sinudu$ $=\frac{1}{2}(-cosu)|_0^\frac{\pi}{2}$ $=-\frac{1}{2}(cos2x)|_0^\frac{\pi}{2}$ $=-\frac{1}{2}[(cos2(\frac{\pi}{2}))-(cos2(0))]$ $=-\frac{1}{2}[(cos\pi)-(cos0)]$ $=-\frac{1}{2}(-1-1)$ $=(-\frac{1}{2})(-2)$ $=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.