Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 513: 65

Answer

$\int_0^\frac{3}{2}(-4x+6)^{\frac{3}{2}}dx=\frac{18\sqrt 6}{5}$

Work Step by Step

$\int_0^\frac{3}{2}(-4x+6)^{\frac{3}{2}}dx$ Let $u=-4x+6$ $\frac{du}{dx}=-4$ $dx=-\frac{1}{4}du$ $=-\frac{1}{4}\int_0^\frac{3}{2}u^{\frac{3}{2}}dx$ $=(-\frac{1}{4})(\frac{2}{5})(u^{\frac{5}{2}}|_0^\frac{3}{2})$ $=-\frac{1}{10}(-4x+6)^\frac{5}{2}|_0^\frac{3}{2}$ $=-\frac{1}{10}[(-4(\frac{3}{2})+6)^\frac{5}{2}-(-4(0)+6)^\frac{5}{2})]$ $=-\frac{1}{10}[(-6+6)^\frac{5}{2}-(0+6)^\frac{5}{2}]$ $=-\frac{1}{10}(0-36\sqrt 6)$ $=\frac{36\sqrt 6}{10}$ $=\frac{18\sqrt 6}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.