Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 9

Answer

$$A = 2\sqrt 2 $$

Work Step by Step

$$\eqalign{ & y = \sin x,{\text{ }}y = \cos x,{\text{ }}\frac{\pi }{4} \leqslant x \leqslant \frac{{5\pi }}{4} \cr & \sin x \geqslant \cos x{\text{ on the interval }}\left( {\frac{\pi }{4},\frac{{5\pi }}{4}} \right) \cr & {\text{From the graph and using symmetry properties, we obtain }} \cr & A = \int_{\pi /4}^{5\pi /4} {\left( {\sin x - \cos x} \right)} dx \cr & {\text{Integrate and evaluate}} \cr & A = \left[ { - \cos x - \sin x} \right]_{\pi /4}^{5\pi /4} \cr & A = - \left[ {\cos \left( {\frac{{5\pi }}{4}} \right) + \sin \left( {\frac{{5\pi }}{4}} \right)} \right] + \left[ {\cos \left( {\frac{\pi }{4}} \right) + \sin \left( {\frac{\pi }{4}} \right)} \right] \cr & A = - \left( { - \sqrt 2 } \right) + \left( {\sqrt 2 } \right) \cr & A = 2\sqrt 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.