Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 20

Answer

$$V = \frac{{{\pi ^2}}}{2}$$

Work Step by Step

$$\eqalign{ & y = \frac{1}{{\sqrt {1 + {x^2}} }},{\text{ }}y = 0,{\text{ }}x = - 1,{\text{ }}x = 1 \cr & {\text{From the graph shown below, we can apply the disk method}} \cr & V = 2\left[ {\pi \int_0^1 {{{\left[ {f\left( x \right)} \right]}^2}} dx} \right] \cr & V = 2\pi \int_0^1 {{{\left( {\frac{1}{{\sqrt {1 + {x^2}} }}} \right)}^2}} dx \cr & {\text{Integrate}} \cr & V = 2\pi \int_0^1 {\frac{1}{{1 + {x^2}}}} dx \cr & V = 2\pi \left[ {\arctan x} \right]_0^1 \cr & V = 2\pi \left[ {\arctan \left( 1 \right) - \arctan \left( 0 \right)} \right] \cr & V = 2\pi \left( {\frac{\pi }{4}} \right) \cr & V = \frac{{{\pi ^2}}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.