Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 8

Answer

$A = \frac{{4\pi }}{3} + \ln \left| {\frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}} \right|$

Work Step by Step

$$\eqalign{ & y = \csc x,{\text{ }}y = 2,{\text{ }}\frac{\pi }{6} \leqslant x \leqslant \frac{{5\pi }}{6} \cr & 2 \geqslant \csc x{\text{ on the interval }}\left( {\frac{\pi }{6},\frac{{5\pi }}{6}} \right) \cr & {\text{The area is given by}} \cr & A = \int_{\pi /6}^{5\pi /6} {\left( {2 - \csc x} \right)} dx \cr & {\text{Integrate and evaluate}} \cr & A = \left[ {2x - \ln \left| {\csc x - \cot x} \right|} \right]_{\pi /6}^{5\pi /6} \cr & A = \left[ {2\left( {\frac{{5\pi }}{6}} \right) - \ln \left| {\csc \left( {\frac{{5\pi }}{6}} \right) - \cot \left( {\frac{{5\pi }}{6}} \right)} \right|} \right] \cr & {\text{ }} - \left[ {2\left( {\frac{\pi }{6}} \right) - \ln \left| {\csc \left( {\frac{\pi }{6}} \right) - \cot \left( {\frac{\pi }{6}} \right)} \right|} \right] \cr & A = \left[ {\frac{{5\pi }}{3} - \ln \left| {2 + \sqrt 3 } \right|} \right] - \left[ {\frac{\pi }{3} - \ln \left| {2 - \sqrt 3 } \right|} \right] \cr & A = \frac{{5\pi }}{3} - \ln \left| {2 + \sqrt 3 } \right| - \frac{\pi }{3} + \ln \left| {2 - \sqrt 3 } \right| \cr & A = \frac{{4\pi }}{3} + \ln \left| {\frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}} \right| \cr & A \approx 1.5549 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.