Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 26

Answer

$$s = \frac{{14}}{3}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{1}{6}{x^3} + \frac{1}{{2x}},{\text{ }}\left[ {1,3} \right] \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{6}{x^3} + \frac{1}{{2x}}} \right] \cr & f'\left( x \right) = \frac{{3{x^2}}}{6} - \frac{{{x^{ - 2}}}}{2} \cr & f'\left( x \right) = \frac{1}{2}{x^2} - \frac{1}{{2{x^2}}} \cr & {\text{Use the arc length formula}} \cr & s = \int_a^b {\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} dx} \cr & s = \int_1^3 {\sqrt {1 + {{\left( {\frac{1}{2}{x^2} - \frac{1}{{2{x^2}}}} \right)}^2}} dx} \cr & s = \int_1^3 {\sqrt {1 + \frac{{{x^4}}}{4} - \frac{1}{2} + \frac{1}{{4{x^4}}}} dx} \cr & s = \int_1^3 {\sqrt {\frac{{{x^4}}}{4} + \frac{1}{2} + \frac{1}{{4{x^4}}}} dx} \cr & {\text{Factoring}} \cr & s = \int_1^3 {\sqrt {{{\left( {\frac{{{x^2}}}{2} + \frac{1}{{2{x^2}}}} \right)}^2}} dx} \cr & s = \int_1^3 {\left( {\frac{{{x^2}}}{2} + \frac{1}{{2{x^2}}}} \right)dx} \cr & {\text{Integrating}} \cr & s = \left[ {\frac{{{x^3}}}{6} - \frac{1}{{2x}}} \right]_1^3 \cr & s = \frac{{13}}{3} + \frac{1}{3} \cr & s = \frac{{14}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.