Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 1

Answer

$$A = \frac{{64}}{3}$$

Work Step by Step

$$\eqalign{ & y = 6 - \frac{1}{2}{x^2},{\text{ }}y = \frac{3}{4}x,{\text{ }}x = - 2,{\text{ }}x = 2 \cr & {\text{From the graph we can note that }}6 - \frac{1}{2}{x^2} \geqslant \frac{3}{4}x{\text{ on }}\left[ { - 2,2} \right] \cr & {\text{Then, the area is given by:}} \cr & A = \int_{ - 2}^2 {\left( {6 - \frac{1}{2}{x^2} - \frac{3}{4}x} \right)} dx \cr & {\text{Integrate and evaluate}} \cr & A = \left[ {6x - \frac{1}{6}{x^3} - \frac{3}{8}{x^2}} \right]_{ - 2}^2 \cr & A = \left[ {6\left( 2 \right) - \frac{1}{6}{{\left( 2 \right)}^3} - \frac{3}{8}{{\left( 2 \right)}^2}} \right] - \left[ {6\left( { - 2} \right) - \frac{1}{6}{{\left( { - 2} \right)}^3} - \frac{3}{8}{{\left( { - 2} \right)}^2}} \right] \cr & A = \frac{{55}}{6} + \frac{{73}}{6} \cr & A = \frac{{64}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.