Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 3

Answer

$$A = \frac{\pi }{2}$$

Work Step by Step

$$\eqalign{ & y = \frac{1}{{{x^2} + 1}},{\text{ }}y = 0,{\text{ }}x = 1 \cr & {\text{From the graph we can note that }}\frac{1}{{{x^2} + 1}} > 0{\text{ on }}\left[ { - 1,1} \right] \cr & {\text{Then, the area is given by:}} \cr & A = \int_{ - 1}^1 {\left( {\frac{1}{{{x^2} + 1}} - 0} \right)} dx \cr & A = \int_{ - 1}^1 {\frac{1}{{{x^2} + 1}}} dx \cr & {\text{By symmetry}} \cr & A = 2\int_0^1 {\frac{1}{{{x^2} + 1}}} dx \cr & {\text{Integrate and evaluate}} \cr & A = 2\left[ {{{\tan }^{ - 1}}x} \right]_0^1 \cr & A = 2\left[ {{{\tan }^{ - 1}}\left( 1 \right)} \right] \cr & A = 2\left( {\frac{\pi }{4}} \right) \cr & A = \frac{\pi }{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.