Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 7

Answer

$$A = {e^2} + 1$$

Work Step by Step

$$\eqalign{ & y = {e^2},{\text{ }}y = {e^x} \cr & {e^2} > {e^x}{\text{ on the interval }}\left( {0,2} \right) \cr & {\text{From the graph and using symmetry properties, we obtain }} \cr & A = \int_0^2 {\left( {{e^2} - {e^x}} \right)} dx \cr & {\text{Integrate and evaluate}} \cr & A = \left[ {{e^2}x - {e^x}} \right]_0^2 \cr & A = \left[ {{e^2}\left( 2 \right) - {e^2}} \right] - \left[ {{e^2}\left( 0 \right) - {e^0}} \right] \cr & A = \left( {2{e^2} - {e^2}} \right) - \left( {0 - 1} \right) \cr & A = {e^2} + 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.