Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - Review Exercises - Page 503: 22

Answer

$$V = \left( {\frac{{1 - {e^{ - 2}}}}{2}} \right)\pi $$

Work Step by Step

$$\eqalign{ & y = {e^{ - x}},{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = 1 \cr & {\text{From the graph shown below, we can apply the disk method}} \cr & V = \pi \int_0^1 {{{\left[ {{e^{ - x}}} \right]}^2}} dx \cr & V = \pi \int_0^1 {{e^{ - 2x}}} dx \cr & {\text{Integrate}} \cr & V = - \frac{1}{2}\pi \left[ {{e^{ - 2x}}} \right]_0^1 \cr & V = - \frac{1}{2}\left[ {{e^{ - 2\left( 1 \right)}} - {e^{ - 2\left( 0 \right)}}} \right] \cr & V = - \frac{1}{2}\left[ {{e^{ - 2}} - 1} \right] \cr & V = \left( {\frac{{1 - {e^{ - 2}}}}{2}} \right)\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.