Answer
$y'=\dfrac{(\sec(x))(x\tan(x)-1)}{x^2}$.
Work Step by Step
Using the quotient rule: $y'=(\frac{u(x)}{v(x)})'=\frac{u'(x)v(x)-v'(x)u(x)}{(v(x))^2}$
$u(x)=\sec(x); u'(x)=\sec(x)\tan(x)$
$v(x)=x; v'(x)=1$
$y'=\dfrac{(\sec(x)\tan(x))(x)-(1)(\sec(x))}{x^2}$
$=\dfrac{(\sec(x))(x\tan(x)-1)}{x^2}$