Answer
$f'(x)=\frac{3x+1}{2x\sqrt{x}}$
Work Step by Step
Using the quotient rule: $fâ(x)=(\frac{u(x)}{v(x)})'=\frac{u'(x)v(x)-v'(x)u(x)}{(v(x))^2}$
$u(x)=3x-1; u'(x)=3$
$v(x)=\sqrt{x}; v'(x)=\frac{1}{2\sqrt{x}}$
$f'(x)=\frac{(3)(\sqrt{x})-(\frac{1}{2\sqrt{x}})(3x-1)}{(\sqrt{x})^2}$
$=\frac{(3)(\frac{2x}{2\sqrt{x}})-(\frac{1}{2\sqrt{x}})(3x-1)}{(\sqrt{x})^2}$
$=\frac{6x-3x+1}{2(\sqrt{x})(x)}=\frac{3x+1}{2x\sqrt{x}}$