Answer
$f'(x)=-\frac{5}{(x-2)^2}$
Work Step by Step
Using the quotient rule: $fâ(x)=(\frac{u(x)}{v(x)})'=\frac{u'(x)v(x)-v'(x)u(x)}{(v(x))^2}$
$u(x)=(x^2+5x+6); u'(x)=(2x+5)$
$v(x)=(x^2-4); v'(x)=2x$
$f'(x)=\frac{(2x+5)(x^2-4)-(2x)(x^2+5x+6)}{(x^2-4)^2}=$
$\frac{(2x^3+5x^2-8x-20)+(-2x^3-10x^2-20)}{(x-2)^2(x+2)^2}=$
$\frac{-5x^2-20x-20}{(x-2)^2(x+2)^2}=-\frac{5(x+2)^2}{(x+2)^2(x-2)^2}=-\frac{5}{(x-2)^2}$