Answer
$f'(x)=10x^4-8x^3-21x^2-10x-30.$
Work Step by Step
Product Rule: $f'(x)=((u(x)(v(x)w(x))’=u’(x)v(x)w(x)+u(x)v’(x)w(x)$ $+u(x)v(x)w'(x)$
$u(x)=(2x^3+5x) ;u’(x)=(6x^2+5) $ .
$v(x)=(x-3) ;v’(x)=1 $ .
$w(x)=(x+2);w'(x)=1$ .
$f'(x)=(x+2)(2x^3+5x)+(x-3)(2x^3+5x)$
$+(x-3)(x+2)(6x^2+5)=10x^4-8x^3-21x^2-10x-30.$