Answer
See explanation.
Work Step by Step
We used the software Wolfram Mathematica using the function $\operatorname{cross}[a, b]$, which gives the vector cross product of b and $a$:
a) $(\vec{w} \times \vec{v})\times\vec{u} =\langle-20,-67,-9\rangle$
b) $ w\times(\vec{v} \times u) =\langle-78,52,26\rangle$
$c)(\vec{v} \times \vec{w}) \times(\vec{u} \times \vec{v})=\langle 0,-56,-392\rangle$
d) $(\vec{v} \times \vec{u})\times(\vec{w} \times \vec{v}) =\langle 0,56,392\rangle$