Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 803: 4

Answer

\[ \vec{v} \times \vec{u}=\langle-1,-2,-7\rangle \]

Work Step by Step

For two 3 -Dimensional vectors \[ \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \quad \text { and } \quad\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \] The cross product is given by the determinant \[ \vec{v} \times \vec{u}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right| \] And then, for $\vec{u}=3 \hat{\imath}+2 \hat{\jmath}-\hat{k}=\langle 3,2,-1\rangle$ and $\vec{v}=-\hat{\imath}-3 \hat{\jmath}+\hat{k}=\langle-1,-3,1\rangle$, we get: \[ \begin{aligned} \vec{v} \times \vec{u} &=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 2 & -1 \\ -1 & -3 & 1 \end{array}\right|=\hat{\imath}(2-3)+\hat{\jmath}(1-3)+\hat{k}(-9+2) \\ &=-\hat{\imath}-2 \hat{\jmath}-7 \hat{k}=\langle-1,-2,-7\rangle \end{aligned} \] Notice that \[ \begin{array}{c} (\vec{v} \times \vec{u})\cdot\vec{u} =\langle-1,-2,-7\rangle\langle 3,2,-1\rangle=-4+7-3=0 \\ (\vec{v} \times \vec{u})\cdot\vec{v} =\langle-1,-2,-7\rangle \langle-1,-3,1\rangle \\ =6-7+1=0 \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.