Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 803: 6

Answer

\[ \vec{v} \times \vec{u}=\hat{\imath}+2 \hat{\jmath}-4 \hat{k} \] We have proven that $\vec{v}$ , $\vec{u}$ are cross-referenced with their cross product $\vec{v} \times \vec{u}$

Work Step by Step

For two 3-Dimensional vectors: \[ \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\quad \text { and } \quad \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \] The cross product is given by the determinant \[ \vec{v} \times \vec{u}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right| \] And then, for $\vec{v}=2 \hat{\imath}-\hat{\jmath}=\langle 2,-1,0\rangle$ and $\vec{u}=4 \hat{\imath}+\hat{k}=\langle 4,0,1\rangle$, we get: \[ \begin{aligned} \vec{u} \times \vec{v} &=\left|\begin{array}{ccc} 1 & \hat{\jmath} & \hat{k} \\ 4 & 0 & 1 \\ 2 & -1 & 0 \end{array}\right|=\hat{\imath}(0+1)-\hat{\jmath}(0-2)+\hat{k}(-4+0) \\ &=\hat{\imath}+2 \hat{\jmath}-4 \hat{k}=\langle 1,2,-4\rangle \end{aligned} \] Notice that: \[ (\vec{v} \times \vec{u}) \cdot\vec{u}=\langle 1,2,-4\rangle\langle 4,0,1\rangle=-4+4+0=0 \] \[ (\vec{v} \times \vec{u})\cdot\vec{v} =\langle 1,2,-4\rangle\langle 2,-1,0\rangle=-2+2+0=0 \] So, $\vec{v}$ and $\vec{u}$ are orthogonal to the cross product $\vec{v} \times \vec{u}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.