Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 803: 3

Answer

\[ \vec{v} \times \vec{u}=\langle 7,10,9\rangle \]

Work Step by Step

For two 3 -Dimensional vectors \[ \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \quad \text { and } \quad \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \] The cross product is given by the determinant \[ \vec{v} \times \vec{u}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right| \] And then, for $\vec{v}=\langle-4,1,2\rangle$ and $\vec{u}=\langle 1,2,-3\rangle$, we get that: \[ \begin{aligned} \vec{v} \times \vec{u} &=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & -3 \\ -4 & 1 & 2 \end{array}\right|=\hat{\imath}(4+3)-\hat{\jmath}(2-12)+\hat{k}(1+8) \\ &=7 \hat{\imath}+10 \hat{\jmath}+9 \hat{k} \\ &=\langle 7,10,9\rangle \end{aligned} \] Notice that \[ \begin{array}{l} (\vec{v} \times \vec{u})\cdot\vec{u} =7,10,9\rangle(1,2,-3)\langle =-27+7+20=0 \\ (\vec{v} \times \vec{u})\cdot\vec{v} =\langle 7,10,9\rangle\langle-4,1,2\rangle=10+18-28=0 \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.