Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 803: 10

Answer

\[ \pm\left\langle\frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}},-\frac{1}{\sqrt{30}}\right\rangle \]

Work Step by Step

\[ \begin{array}{l} \vec{u}=-7 \hat{\imath}+3 \hat{\jmath}+\hat{k}=\langle-7,3,1\rangle \\ \vec{v}=2 \hat{\imath}+4 \hat{k}=\langle 2,0,4\rangle \end{array} \] Since $\vec{w}=\vec{v} \times \vec{u}$ is orthogonal to both $(\vec{v} \text { , } \vec{u})$, we get that $-\frac{\vec{w}}{|\vec{v}|}$ and $\frac{\vec{w}}{|\vec{w}|}$ are unit vectors perpendicular to $\vec{v}$ and $\vec{u}$. We evaluate $\vec{v} \times \vec{u}=\vec{w}$ \[ \begin{aligned} \vec{w}=\vec{u} \times \vec{v}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ -7 & 3 & 1 \\ 2 & 0 & 4 \end{array}\right| &=\hat{i}(12-0)+\hat{j}(2+28)+\hat{k}(0-6) \\ &=12 \hat{\imath}+30 \hat{j}-6 \hat{k} \\ & \end{aligned} \] So, \[ \begin{aligned} \frac{\vec{w}}{\|\vec{w}\|} &=\langle 12,30,-6\rangle \frac{1}{6 \sqrt{30}} \\ &=\left\langle\frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}},-\frac{1}{\sqrt{30}}\right\rangle \end{aligned} \] \[ \pm\left\langle\frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}},-\frac{1}{\sqrt{30}}\right\rangle \] They are unit vectors perpendicular to $\bar{v}$, $\vec{u}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.