Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 803: 5

Answer

\[ \vec{v} \times \vec{u} =\langle-4,-6,-3\rangle \]

Work Step by Step

For two 3 -Dimensional vectors \[ \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \quad \text { and } \quad \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \] The cross product is given by the determinant \[ \vec{v} \times \vec{u}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right| \] And then, for $\vec{v}=\langle 3,0,-4\rangle$ and $\vec{u}=\langle 0,1,-2\rangle$, we get that: \[ \begin{aligned} \vec{v} \times \vec{u}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 1 & -2 \\ 3 & 0 & -4 \end{array}\right| &=\hat{i}(-4+0)+\hat{\jmath}(-6+0)+\hat{k}(0-3) \\ &=-4 \hat{\imath}-6 \hat{\jmath}-3 \hat{k} \\ &=\langle-4,-6,-3\rangle \end{aligned} \] Notice that: \[ (\vec{v} \times \vec{u})\cdot\vec{u} =\langle-4,-6,-3\rangle(0,1,-2) =6-6=0 \] \[ (\vec{v} \times \vec{u})\cdot\vec{v} =\langle-4,-6,-3\rangle\langle 3,0,-4\rangle=12-12=0 \] So, $\vec{v}$, $\vec{u}$ are orthogonal to the cross product $\vec{v} \times \vec{u}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.