Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 803: 1

Answer

\[ \hat{k}-\hat{\jmath}=\hat{i} \times(\hat{\imath}+\hat{\jmath}+\hat{k}) \]

Work Step by Step

For two 3 -Dimensional vectors \[ \vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \text { and } \quad \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \quad \] its cross product is given by the determinant \[ \vec{u} \times \vec{v}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right| \] a) Since $\hat{i}=\langle 1,0,0\rangle$ and $\hat{\imath}+\hat{\jmath}+\hat{k}=\langle 1,1,1\rangle$, we get that \[ \begin{aligned} \hat{i} \times(\hat{i}+\hat{j}+\hat{k}) &=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}\right| \\ &=\hat{k}-\hat{j} \end{aligned} \] b) Notice that \[ \begin{aligned} (\hat{k}+\hat{j}+\hat{i}) \times \hat{i} &=\hat{i} \times \hat{k} +\hat{i} \times \hat{j}+\hat{i} \times \hat{i}\\ &=-(\hat{k} \times \hat{i}) +0+\hat{k} \\ &=\hat{k}-\hat{j} \end{aligned} \] We get that: \[ \hat{k}-\hat{\jmath}=\hat{i} \times(\hat{i}+\hat{\jmath}+\hat{k}) \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.