Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 4

Answer

a) $y'=\frac{2y^2}{x^2}$ b) $y'=\frac{1}{2(1-2x)^2}$ c) See below

Work Step by Step

a) $\frac{d}{dx}(2x^{-1}-y^{-1}=4)\\ -2x^{-2}+y^{-2}y'=0\\ -\frac{2}{x^2}+\frac{y'}{y^2}=0\\ \frac{y'}{y^2}=\frac{2}{x^2}\\ y'=\frac{2y^2}{x^2}$ b) First we have to solve for $y$. $\frac{2}{x}-\frac{1}{y}=4\\ \frac{2}{x}-4=\frac{1}{y}\\ y=\frac{1}{\frac{2}{x}-4}\\ y=\frac{1}{\frac{2-4x}{x}}\\ y=\frac{x}{2-4x}\\$ Then we take the derivative of $y$ by using the Quotient Rule. $y'=\frac{(2-4x)(1)-(x)(-4)}{(2-4x)^2}\\ y'=\frac{2}{(2-4x)^2}\\ y'=\frac{2}{(2(1-2x))^2}\\ y'=\frac{2}{4(1-2x)^2}\\ y'=\frac{1}{2(1-2x)^2}\\$ c) We plug in $y=\frac{x}{2-4x}$ into a). $y'=\frac{{2(\frac{x}{2-4x})}^2}{x^2}\\ y'=\frac{\frac{2{x^2}}{{(2-4x)^2}}}{x^2}\\ y'=\frac{2x^2}{x^2(2-4x)^2}\\ y'=\frac{2}{(2-4x)^2}\\ y'=\frac{2}{(2(1-2x))^2}\\ y'=\frac{2}{4(1-2x)^2}\\ y'=\frac{1}{2(1-2x)^2}\\$ Therefore, our solutions to parts a) and b) are consistent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.