Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 18

Answer

$\frac{{dy}}{{dx}} = \frac{{2x - \cos y\cos x}}{{5 - \sin x\sin y}}$

Work Step by Step

$$\eqalign{ & \sin x\cos y = {x^2} - 5y \cr & {\text{Differentiating both sides of the equation with respect to }}x \cr & \underbrace {\frac{d}{{dx}}\left[ {\sin x\cos y} \right]}_{{\text{use product rule}}} = \frac{d}{{dx}}\left[ {{x^2}} \right] - \frac{d}{{dx}}\left[ {5y} \right] \cr & \sin x\frac{d}{{dx}}\left[ {\cos y} \right] + \cos y\frac{d}{{dx}}\left[ {\sin x} \right] = \frac{d}{{dx}}\left[ {{x^2}} \right] - \frac{d}{{dx}}\left[ {5y} \right] \cr & y{\text{ is a function of }}x,{\text{ using the chain rule we have}} \cr & \sin x\left( { - \sin y} \right)\frac{{dy}}{{dx}} + \cos y\cos x = 2x - 5\frac{{dy}}{{dx}} \cr & - \sin x\sin y\frac{{dy}}{{dx}} + \cos y\cos x = 2x - 5\frac{{dy}}{{dx}} \cr & {\text{Collect the terms that contains }}\frac{{dy}}{{dx}} \cr & 5\frac{{dy}}{{dx}} - \sin x\sin y\frac{{dy}}{{dx}} = 2x - \cos y\cos x \cr & {\text{Solve this equation for }}\frac{{dy}}{{dx}} \cr & \left( {5 - \sin x\sin y} \right)\frac{{dy}}{{dx}} = 2x - \cos y\cos x \cr & \frac{{dy}}{{dx}} = \frac{{2x - \cos y\cos x}}{{5 - \sin x\sin y}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.