Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 17

Answer

$\frac{{dy}}{{dx}} = \frac{{ - 2{e^y} - {e^x}y}}{{2x{e^y} + {e^x}}}$

Work Step by Step

$$\eqalign{ & 2x{e^y} + y{e^x} = 3 \cr & {\text{Differentiating both sides of the equation with respect to }}x \cr & \underbrace {\frac{d}{{dx}}\left[ {2x{e^y}} \right]}_{{\text{use product rule}}} + \underbrace {\frac{d}{{dx}}\left[ {y{e^x}} \right]}_{{\text{use product rule}}} = \frac{d}{{dx}}\left[ 3 \right] \cr & 2x\frac{d}{{dx}}\left[ {{e^y}} \right] + 2{e^y}\frac{d}{{dx}}\left[ x \right] + y\frac{d}{{dx}}\left[ {{e^x}} \right] + {e^x}\frac{d}{{dx}}\left[ y \right] = \frac{d}{{dx}}\left[ 3 \right] \cr & y{\text{ is a function of }}x,{\text{ using the chain rule we have}} \cr & 2x{e^y}\frac{{dy}}{{dx}} + 2{e^y}\left( 1 \right) + y\left( {{e^x}} \right) + {e^x}\frac{{dy}}{{dx}} = 0 \cr & 2x{e^y}\frac{{dy}}{{dx}} + 2{e^y} + {e^x}y + {e^x}\frac{{dy}}{{dx}} = 0 \cr & {\text{Collect the terms that contains }}\frac{{dy}}{{dx}} \cr & 2x{e^y}\frac{{dy}}{{dx}} + {e^x}\frac{{dy}}{{dx}} = - 2{e^y} - {e^x}y \cr & {\text{Solve this equation for }}\frac{{dy}}{{dx}} \cr & \left( {2x{e^y} + {e^x}} \right)\frac{{dy}}{{dx}} = - 2{e^y} - {e^x}y \cr & \frac{{dy}}{{dx}} = \frac{{ - 2{e^y} - {e^x}y}}{{2x{e^y} + {e^x}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.