Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 13

Answer

$\frac{{dy}}{{dx}} = \frac{{ - \sin x - \cos \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \sin y}}$

Work Step by Step

$$\eqalign{ & \sin \left( {x + y} \right) = \cos x + \cos y \cr & {\text{Differentiating both sides of the equation with respect to }}x \cr & \frac{d}{{dx}}\left[ {\sin \left( {x + y} \right)} \right] = \frac{d}{{dx}}\left[ {\cos x} \right] + \frac{d}{{dx}}\left[ {\cos y} \right] \cr & y{\text{ is a function of }}x,{\text{ using the chain rule we have}} \cr & \cos \left( {x + y} \right)\frac{d}{{dx}}\left[ {x + y} \right] = - \sin x - \sin y\frac{{dy}}{{dx}} \cr & \cos \left( {x + y} \right)\left( {1 + \frac{{dy}}{{dx}}} \right) = - \sin x - \sin y\frac{{dy}}{{dx}} \cr & \cos \left( {x + y} \right) + \cos \left( {x + y} \right)\frac{{dy}}{{dx}} = - \sin x - \sin y\frac{{dy}}{{dx}} \cr & {\text{Collect the terms that contains }}\frac{{dy}}{{dx}} \cr & \cos \left( {x + y} \right)\frac{{dy}}{{dx}} + \sin y\frac{{dy}}{{dx}} = - \sin x - \cos \left( {x + y} \right) \cr & {\text{Solve this equation for }}\frac{{dy}}{{dx}} \cr & \left( {\cos \left( {x + y} \right) + \sin y} \right)\frac{{dy}}{{dx}} = - \sin x - \cos \left( {x + y} \right) \cr & \frac{{dy}}{{dx}} = \frac{{ - \sin x - \cos \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \sin y}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.