Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 14

Answer

$\frac{{dy}}{{dx}} = \frac{{{{\sec }^2}\left( {x - y} \right) - 2{y^3}}}{{{{\sec }^2}\left( {x - y} \right) + 6x{y^2}}}$

Work Step by Step

$$\eqalign{ & \tan \left( {x - y} \right) = 2x{y^3} + 1 \cr & {\text{Differentiating both sides of the equation with respect to }}x \cr & \frac{d}{{dx}}\left[ {\tan \left( {x - y} \right)} \right] = \underbrace {\frac{d}{{dx}}\left[ {2x{y^3}} \right]}_{{\text{use product rule}}} + \frac{d}{{dx}}\left[ 1 \right] \cr & \frac{d}{{dx}}\left[ {\tan \left( {x - y} \right)} \right] = 2x\frac{d}{{dx}}\left[ {{y^3}} \right] + 2{y^3}\frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ 1 \right] \cr & y{\text{ is a function of }}x,{\text{ using the chain rule we have}} \cr & {\sec ^2}\left( {x - y} \right)\frac{d}{{dx}}\left[ {x - y} \right] = 2x\left( {3{y^2}} \right)\frac{{dy}}{{dx}} + 2{y^3}\left( 1 \right) + 0 \cr & {\sec ^2}\left( {x - y} \right)\left( {1 - \frac{{dy}}{{dx}}} \right) = 6x{y^2}\frac{{dy}}{{dx}} + 2{y^3} \cr & {\sec ^2}\left( {x - y} \right) - {\sec ^2}\left( {x - y} \right)\frac{{dy}}{{dx}} = 6x{y^2}\frac{{dy}}{{dx}} + 2{y^3} \cr & {\text{Collect the terms that contains }}\frac{{dy}}{{dx}} \cr & - {\sec ^2}\left( {x - y} \right)\frac{{dy}}{{dx}} - 6x{y^2}\frac{{dy}}{{dx}} = 2{y^3} - {\sec ^2}\left( {x - y} \right) \cr & {\sec ^2}\left( {x - y} \right)\frac{{dy}}{{dx}} + 6x{y^2}\frac{{dy}}{{dx}} = {\sec ^2}\left( {x - y} \right) - 2{y^3} \cr & {\text{Solve this equation for }}\frac{{dy}}{{dx}} \cr & \left[ {{{\sec }^2}\left( {x - y} \right) + 6x{y^2}} \right]\frac{{dy}}{{dx}} = {\sec ^2}\left( {x - y} \right) - 2{y^3} \cr & \frac{{dy}}{{dx}} = \frac{{{{\sec }^2}\left( {x - y} \right) - 2{y^3}}}{{{{\sec }^2}\left( {x - y} \right) + 6x{y^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.