Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 3

Answer

(a) $y' = -\frac{\sqrt{y}}{\sqrt{x}}$ (b) $y' = 1-\frac{1}{\sqrt{x}}$ (c) $y' = 1-\frac{1}{\sqrt{x}}$

Work Step by Step

(a) $\sqrt{x} + \sqrt{y} = 1$ $\frac{1}{2}x^{-1/2}+\frac{1}{2}y^{-1/2}~y' = 0$ $\frac{1}{2}y^{-1/2}~y' = -\frac{1}{2}x^{-1/2}$ $\frac{y'}{2\sqrt{y}} = -\frac{1}{2~\sqrt{x}}$ $y' = -\frac{\sqrt{y}}{\sqrt{x}}$ (b) $\sqrt{x} + \sqrt{y} = 1$ $\sqrt{y} = 1 - \sqrt{x}$ $y = 1 - 2\sqrt{x}+x$ $y' = -\frac{1}{\sqrt{x}}+1$ $y' = 1-\frac{1}{\sqrt{x}}$ (c) $y' = -\frac{\sqrt{y}}{\sqrt{x}}$ $y' = -\frac{\sqrt{1 - 2\sqrt{x}+x}}{\sqrt{x}}$ $y' = -\frac{\sqrt{(1 - \sqrt{x})^2}}{\sqrt{x}}$ $y' = -\frac{(1 - \sqrt{x})}{\sqrt{x}}$ $y' = 1-\frac{1}{\sqrt{x}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.