Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 21

Answer

$y'=\frac{ye^{\frac{x}{y}}-y^2}{xe^{\frac{x}{y}}-y^2}$

Work Step by Step

$(e^{\frac{x}{y}}=x-y)'$ Note: To find $(e^{\frac{x}{y}})'$, we will need the quotient rule. $(\frac{y-xy'}{y^2})e^{\frac{x}{y}}=1-y'$ $ye^{\frac{x}{y}}-xy'e^{\frac{x}{y}}=y^2-y'y^2$ Now, solve for $y'$. $ye^{\frac{x}{y}}-y^2=xy'e^{\frac{x}{y}}-y'y^2$ $ye^{\frac{x}{y}}-y^2=y'(xe^{\frac{x}{y}}-y^2)$ $y'=\frac{ye^{\frac{x}{y}}-y^2}{xe^{\frac{x}{y}}-y^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.