Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 22

Answer

$\frac{{dy}}{{dx}} = \frac{{{e^y} + 2x\sin \left( {{x^2} + {y^2}} \right)}}{{ - x{e^y} - 2y\sin \left( {{x^2} + {y^2}} \right)}}$

Work Step by Step

$$\eqalign{ & \cos \left( {{x^2} + {y^2}} \right) = x{e^y} \cr & {\text{Differentiating both sides of the equation with respect to }}x \cr & \frac{d}{{dx}}\left[ {\cos \left( {{x^2} + {y^2}} \right)} \right] = \underbrace {\frac{d}{{dx}}\left[ {x{e^y}} \right]}_{{\text{use product rule}}} \cr & \frac{d}{{dx}}\left[ {\cos \left( {{x^2} + {y^2}} \right)} \right] = x\frac{d}{{dx}}\left[ {{e^y}} \right] + {e^y}\frac{d}{{dx}}\left[ x \right] \cr & y{\text{ is a function of }}x,{\text{ using the chain rule we have}} \cr & - \sin \left( {{x^2} + {y^2}} \right)\frac{d}{{dx}}\left[ {{x^2} + {y^2}} \right] = x{e^y}\frac{{dy}}{{dx}} + {e^y}\left( 1 \right) \cr & - \sin \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\frac{{dy}}{{dx}}} \right) = x{e^y}\frac{{dy}}{{dx}} + {e^y} \cr & - 2x\sin \left( {{x^2} + {y^2}} \right) - 2y\sin \left( {{x^2} + {y^2}} \right)\frac{{dy}}{{dx}} = x{e^y}\frac{{dy}}{{dx}} + {e^y} \cr & {\text{Collect the terms that contains }}\frac{{dy}}{{dx}} \cr & - x{e^y}\frac{{dy}}{{dx}} - 2y\sin \left( {{x^2} + {y^2}} \right)\frac{{dy}}{{dx}} = {e^y} + 2x\sin \left( {{x^2} + {y^2}} \right) \cr & {\text{Solve this equation for }}\frac{{dy}}{{dx}} \cr & \left[ { - x{e^y} - 2y\sin \left( {{x^2} + {y^2}} \right)} \right]\frac{{dy}}{{dx}} = {e^y} + 2x\sin \left( {{x^2} + {y^2}} \right) \cr & \frac{{dy}}{{dx}} = \frac{{{e^y} + 2x\sin \left( {{x^2} + {y^2}} \right)}}{{ - x{e^y} - 2y\sin \left( {{x^2} + {y^2}} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.