Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 267: 51

Answer

$G'\left( u \right) = \frac{1}{{\sqrt {1 + {u^2}} }}$

Work Step by Step

$$\eqalign{ & G\left( u \right) = {\cosh ^{ - 1}}\sqrt {1 + {u^2}} ,{\text{ }}u > 0 \cr & {\text{Differentiate}} \cr & G'\left( u \right) = \frac{d}{{du}}\left[ {{{\cosh }^{ - 1}}\sqrt {1 + {u^2}} } \right] \cr & {\text{Use Derivatives of Inverse Hyperbolic Functions }} \cr & \frac{d}{{du}}\left[ {{{\cosh }^{ - 1}}v} \right] = \frac{1}{{\sqrt {{v^2} - 1} }}\frac{{dv}}{{du}},{\text{ let }}v = \sqrt {1 + {u^2}} ,{\text{ so}} \cr & G'\left( u \right) = \frac{1}{{\sqrt {{{\left( {\sqrt {1 + {u^2}} } \right)}^2} - 1} }}\frac{d}{{du}}\left[ {\sqrt {1 + {u^2}} } \right] \cr & {\text{Compute the derivative and simplify}} \cr & G'\left( u \right) = \frac{1}{{\sqrt {1 + {u^2} - 1} }}\left( {\frac{{2u}}{{2\sqrt {1 + {u^2}} }}} \right) \cr & G'\left( u \right) = \frac{1}{{\sqrt {{u^2}} }}\left( {\frac{u}{{\sqrt {1 + {u^2}} }}} \right) \cr & G'\left( u \right) = \frac{1}{{\left| u \right|}}\left( {\frac{u}{{\sqrt {1 + {u^2}} }}} \right) \cr & {\text{Where }}u > 0 \cr & G'\left( u \right) = \frac{1}{u}\left( {\frac{u}{{\sqrt {1 + {u^2}} }}} \right) \cr & G'\left( u \right) = \frac{1}{{\sqrt {1 + {u^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.