Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 267: 42

Answer

$H'\left( v \right) = 2{e^{\tanh 2v}}{\operatorname{sech} ^2}2v$

Work Step by Step

$$\eqalign{ & H\left( v \right) = {e^{\tanh 2v}} \cr & {\text{Differentiate}} \cr & H'\left( v \right) = \frac{d}{{dv}}\left[ {{e^{\tanh 2v}}} \right] \cr & {\text{Use }}\frac{d}{{dx}}\left[ {{e^u}} \right] = {e^u}\frac{{du}}{{dx}} \cr & H'\left( v \right) = {e^{\tanh 2v}}\frac{d}{{dv}}\left[ {\tanh 2v} \right] \cr & {\text{Use the Derivatives of Hyperbolic Functions }} \cr & \frac{d}{{dv}}\left[ {\tanh u} \right] = {\operatorname{sech} ^2}u\frac{{du}}{{dv}},{\text{ let }}u = 2v,{\text{ so}} \cr & H'\left( v \right) = {e^{\tanh 2v}}\left[ {{{\operatorname{sech} }^2}2v\frac{d}{{dv}}\left[ {2v} \right]} \right] \cr & {\text{Compute the derivative and simplify}} \cr & H'\left( v \right) = {e^{\tanh 2v}}\left[ {{{\operatorname{sech} }^2}2v\left( 2 \right)} \right] \cr & H'\left( v \right) = 2{e^{\tanh 2v}}{\operatorname{sech} ^2}2v \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.