Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 267: 49

Answer

$\frac{{dy}}{{d\theta }} = \sec \theta $

Work Step by Step

$$\eqalign{ & y = {\cosh ^{ - 1}}\left( {\sec \theta } \right),{\text{ 0}} \leqslant \theta < \frac{\pi }{2} \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {{{\cosh }^{ - 1}}\left( {\sec \theta } \right)} \right] \cr & {\text{Use Derivatives of Inverse Hyperbolic Functions }} \cr & \frac{d}{{d\theta }}\left[ {{{\cos }^{ - 1}}u} \right] = \frac{1}{{\sqrt {{u^2} - 1} }}\frac{{du}}{{d\theta }},{\text{ let }}u = \sec \theta ,{\text{ so}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sqrt {{{\left( {\sec \theta } \right)}^2} - 1} }}\frac{d}{{d\theta }}\left[ {\sec \theta } \right] \cr & {\text{Compute the derivative and simplify}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sqrt {{{\sec }^2}\theta - 1} }}\left( {\sec \theta \tan \theta } \right) \cr & {\text{Use the identity }}1 + {\tan ^2}\theta = {\sec ^2}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sqrt {{{\tan }^2}\theta } }}\left( {\sec \theta \tan \theta } \right) \cr & \frac{{dy}}{{d\theta }} = \sec \theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.