Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 267: 47

Answer

$f'\left( x \right) = - \frac{2}{{\sqrt {1 + 4{x^2}} }}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\sinh ^{ - 1}}\left( { - 2x} \right) \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}\left( { - 2x} \right)} \right] \cr & {\text{Use Derivatives of Inverse Hyperbolic Functions }} \cr & \frac{d}{{dx}}\left[ {{{\sinh }^{ - 1}}u} \right] = \frac{1}{{\sqrt {1 + {u^2}} }}\frac{{du}}{{dx}},{\text{ let }}u = - 2x,{\text{ so}} \cr & f'\left( x \right) = \frac{1}{{\sqrt {1 + {{\left( { - 2x} \right)}^2}} }}\frac{d}{{dx}}\left[ { - 2x} \right] \cr & {\text{Compute the derivative and simplify}} \cr & f'\left( x \right) = \frac{1}{{\sqrt {1 + {{\left( { - 2x} \right)}^2}} }}\left( { - 2} \right) \cr & f'\left( x \right) = - \frac{2}{{\sqrt {1 + 4{x^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.