Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 267: 43

Answer

$f'\left( x \right) = {\operatorname{sech} ^3}x - \operatorname{sech} x{\tanh ^2}x$

Work Step by Step

$$\eqalign{ & y = \operatorname{sech} x\tanh x \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\operatorname{sech} x\tanh x} \right] \cr & {\text{Use the product rule}} \cr & f'\left( x \right) = \operatorname{sech} x\frac{d}{{dx}}\left[ {\tanh x} \right] + \tanh x\frac{d}{{dx}}\left[ {\operatorname{sech} x} \right] \cr & {\text{Use the Derivatives of Hyperbolic Functions }} \cr & f'\left( x \right) = \operatorname{sech} x\left( {{{\operatorname{sech} }^2}x} \right) + \tanh x\left( { - \operatorname{sech} x\tanh x} \right) \cr & {\text{Simplify}} \cr & f'\left( x \right) = {\operatorname{sech} ^3}x - \operatorname{sech} x{\tanh ^2}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.