Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 267: 48

Answer

$g'\left( x \right) = \frac{{3{x^2}}}{{1 - {x^6}}}$

Work Step by Step

$$\eqalign{ & g\left( x \right) = {\tanh ^{ - 1}}\left( {{x^3}} \right) \cr & {\text{Differentiate}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {{{\tanh }^{ - 1}}\left( {{x^3}} \right)} \right] \cr & {\text{Use Derivatives of Inverse Hyperbolic Functions }} \cr & \frac{d}{{dx}}\left[ {{{\tanh }^{ - 1}}u} \right] = \frac{1}{{1 - {u^2}}}\frac{{du}}{{dx}},{\text{ let }}u = {x^3},{\text{ so}} \cr & g'\left( x \right) = \frac{1}{{1 - {{\left( {{x^3}} \right)}^2}}}\frac{d}{{dx}}\left[ {{x^3}} \right] \cr & {\text{Compute the derivative and simplify}} \cr & g'\left( x \right) = \frac{1}{{1 - {{\left( {{x^3}} \right)}^2}}}\left( {3{x^2}} \right) \cr & g'\left( x \right) = \frac{{3{x^2}}}{{1 - {x^6}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.