Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 267: 44

Answer

$\frac{{dy}}{{dx}} = - {\operatorname{sech} ^2}x\operatorname{sech} \left( {\tanh x} \right)\tanh \left( {\tanh x} \right)$

Work Step by Step

$$\eqalign{ & y = \operatorname{sech} \left( {\tanh x} \right) \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\operatorname{sech} \left( {\tanh x} \right)} \right] \cr & {\text{Use the Derivatives of Hyperbolic Functions }} \cr & \frac{d}{{dx}}\left[ {\operatorname{sech} u} \right] = - \operatorname{sech} u\tanh u\frac{{du}}{{dx}},{\text{ let }}u = \tanh x,{\text{ so}} \cr & \frac{{dy}}{{dx}} = - \operatorname{sech} \left( {\tanh x} \right)\tanh \left( {\tanh x} \right)\frac{d}{{dx}}\left[ {\tanh x} \right] \cr & {\text{Differentiate }}\frac{d}{{dx}}\left[ {\tanh x} \right] \cr & \frac{{dy}}{{dx}} = - \operatorname{sech} \left( {\tanh x} \right)\tanh \left( {\tanh x} \right)\left( {{{\operatorname{sech} }^2}x} \right) \cr & {\text{Simplify}} \cr & \frac{{dy}}{{dx}} = - {\operatorname{sech} ^2}x\operatorname{sech} \left( {\tanh x} \right)\tanh \left( {\tanh x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.