Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 183: 72

Answer

$A=-\frac{1}{2}$ $B=-\frac{1}{2}$ $C=-\frac{3}{4}$

Work Step by Step

$y=Ax^2+Bx+C$ Find $y'$ and $y''$: $y'=A\cdot 2x^{2-1}+B+0$ $y'=2Ax+B$ and $y''=2A$ Substituting $y$, $y'$, and $y''$ into the given differential equation, $2A+(2Ax+B)-2(Ax^2+Bx+C)=x^2$ $2A+2Ax+B-2Ax^2-2Bx-2C=x^2$ $-2Ax^2+(2A-2B)x+(2A+B-2C)=1x^2+0x+0$ It should be: $-2A=1\Rightarrow A=-\frac{1}{2}$ $2A-2B=0\Rightarrow B=A=-\frac{1}{2}$ $2A+B-2C=0\Rightarrow 2\cdot (-\frac{1}{2})+(-\frac{1}{2})-2C=0\Rightarrow -\frac{3}{2}-2C=0\Rightarrow C=-\frac{3}{4}$ Thus, $A=-\frac{1}{2}$, $B=-\frac{1}{2}$, and $C=-\frac{3}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.