Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 183: 63

Answer

$y=3x-3$ and $y=3x-7$

Work Step by Step

$y=x^3-3x^2+3x-3$ and $3x-y=15$ Let $g:3x-y=15$. Find the slope of $g$: $3x-y=15$ $y=3x-15$ $m_g=3$ Find $\frac{dy}{dx}$: $\frac{dy}{dx}=\frac{d}{dx}(x^3-3x^2+3x-3)=3x^2-6x+3$ Find the values of $x$ such that the tangent lines to the curve are parallel to $g$: $\frac{dy}{dx}=m_g$ $3x^2-6x+3=3$ $3x^2-6x=0$ $x(3x-6)=0$ $x=0\vee x=2$ Find the tangent line to the curve at $(0,y(0))$: $y-y(0)=m_g(x-0)$ $y-(0^3-3\cdot 0^2+3\cdot 0-3)=3x$ $y-(-3)=3x$ $y=3x-3$ Find the tangent line to the curve at $(2,y(2))$: $y-y(2)=m_g(x-2)$ $y-(2^3-3\cdot 2^2+3\cdot 2-3)=3(x-2)$ $y-(-1))=3x-6$ $y=3x-7$ Thus, the tangent lines are $y=3x-3$ and $y=3x-7$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.