Answer
$x=\ln 2$
Work Step by Step
$f(x)=e^x-2x$
Recall: $f(x)$ has a horizontal tangent at values of $x$ for which $f'(x)=0$.
Find $f'(x)$:
$f'(x)=\frac{d}{dx}(e^x-2x)$ (Use the difference rule)
$f'(x)=\frac{d}{dx}(e^x)-\frac{d}{dx}(2x)$
$f'(x)=e^x-2$
Find $x$ such that $f'(x)=0$:
$e^x-2=0$
$e^x=2$
$x=\ln 2$.
Thus, $f(x)$ has a horizontal tangent for $x=\ln 2$.