Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 183: 70

Answer

a) $f^{(n)}(x)=n!$ b) $f^{(n)}(x)=\frac{(-1)^nn!}{x^{n+1}}$

Work Step by Step

Part a) $f(x)=x^n$ $f'(x)=nx^{n-1}$ $f''(x)=n(n-1)x^{n-2}$ $f'''(x)=n(n-1)(n-2)x^{n-3}$ Continuing this process, we get $f^{(n-1)}(x)=n(n-1)(n-2)\ldots (n-(n-2))x^{n-(n-1)}=n(n-1)(n-2)\ldots 2x$ $f^{(n)}(x)=n(n-1)(n-2)\ldots 2\cdot 1=n!$ Thus, $f^{(n)}(x)=n!$ Part b) $f(x)=1/x=x^{-1}$ $f'(x)=-1x^{-2}$ $f''(x)=1\cdot 2x^{-3}=2!x^{-3}$ $f'''(x)=-1\cdot 2\cdot 3 x^{-4}=-3!x^{-4}$ $f^{(4)}(x)=1\cdot 2\cdot 3\cdot 4x^{-5}=4!x^{-5}$ Continuing this process, we get $f^{(n)}=(-1)^nn!x^{-(n+1)}=\frac{(-1)^nn!}{x^{n+1}}$ Thus, $f^{(n)}(x)=\frac{(-1)^nn!}{x^{n+1}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.