Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 183: 69

Answer

See the explanation.

Work Step by Step

Let $f(x)=\frac{1}{x}$. Using the definition of a derivative, $f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{1}{x+h}-\frac{1}{x}}{h}$ (Simplify the numerator) $=\lim\limits_{h \to 0}\frac{\frac{x-(x+h)}{x(x+h)}}{h}$ $=\lim\limits_{h \to 0}\frac{\frac{-h}{x(x+h)}}{h}$ (Cancel $h$) $=\lim\limits_{h \to 0}\frac{-1}{x(x+h)}$ (Evaluate the limit by direct substitution) $=\frac{-1}{x(x+0)}$ $=\frac{-1}{x^2}$ So, $f'(x)=-\frac{1}{x^2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.