Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 183: 66

Answer

$\left(\frac{3}{2},\frac{5}{4}\right)$

Work Step by Step

Given a parabola $y=x^2-1$. Find the slope of the tangent line to the parabola at $(-1,0)$: $m_{tangent}=\frac{dy}{dx}|_{x=-1}=(2x)|_{x=-1}=2\cdot (-1)=-2$ Since the normal line and the tangent line are perpendicular, the slope of the normal line to the parabola at $(-1,0)$ is $m_{normal}=\frac{-1}{m_{tangent}}=\frac{-1}{-2}=\frac{1}{2}$ Find the equation of the normal line: $y-0=m_{normal}(x-(-1))$ $y=\frac{1}{2}(x+1)$ Find the intersection points between the normal line and the parabola: $x^2-1=\frac{1}{2}(x+1)$ (Multiply by 2) $2x^2-2=x+1$ $2x^2-x-3=0$ $(x+1)(2x-3)=0$ $x=-1\vee x=\frac{3}{2}$ For $x=-1$, $y=(-1)^2-1=1-1=0$ For $x=\frac{3}{2}$, $y=(\frac{3}{2})^2-1=\frac{9}{4}-\frac{4}{4}=\frac{5}{4}$ Thus, the normal line intersects the parabola for the second time at the point $\left(\frac{3}{2},\frac{5}{4}\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.