Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 183: 59

Answer

$(-3,37)$ and $(1,5)$

Work Step by Step

Recall: The tangent of $y=f(x)$ is horizontal when $f'(x)=0$. We have $f(x)=x^3+3x^2-9x+10$. Find $f'(x)$: $f'(x)=3x^{3-1}+3\cdot 2x^{2-1}-9+0$ $f'(x)=3x^2+6x-9$ Find the values of $x$ such that $f'(x)=0$: $3x^2+6x-9=0$ (Divide by 3) $x^2+2x-3=0$ (Factorize the left side) $(x+3)(x-1)=0$ $x=-3\vee x=1$ For $x=-3$, $y=(-3)^3+3\cdot (-3)^2-9\cdot (-3)+10$ $y=-27+27+27+10$ $y=37$ $\therefore (-3,37)$ For $x=1$ $y=1^3+3\cdot 1^2-9\cdot 1+10$ $y=1+3-9+10$ $y=5$ $\therefore (1,5)$ Thus, the points on the curve of $y=x^3+3x^2-9x+10$ where the tangent is horizontal are $(-3,37)$ and $(1,5)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.