Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 271: 92

Answer

(a) $v = \frac{2c^2~t}{2\sqrt{b^2+c^2~t^2}}$ $a =\frac{c^2b^2}{(b^2+c^2~t^2)^{3/2}}$ (b) Since both the velocity and the acceleration are positive for all $t$ such that $t\gt 0$, the particle always moves in the positive direction.

Work Step by Step

(a) $x = \sqrt{b^2+c^2~t^2}$ $v = \frac{dx}{dt}$ We can find the velocity function: $v = \frac{2c^2~t}{2\sqrt{b^2+c^2~t^2}}$ $a = \frac{dv}{dt}$ We can find the acceleration function: $a =\frac{(2c^2)~2\sqrt{b^2+c^2~t^2}-(2c^2~t)^2(b^2+c^2~t^2)^{-1/2}}{4(b^2+c^2~t^2)}$ $a =\frac{(2c^2)~2\sqrt{b^2+c^2~t^2}-(2c^2~t)^2(b^2+c^2~t^2)^{-1/2}}{4(b^2+c^2~t^2)}\cdot \frac{\sqrt{b^2+c^2~t^2}}{\sqrt{b^2+c^2~t^2}}$ $a =\frac{(4c^2)(b^2+c^2~t^2)-(2c^2~t)^2}{4(b^2+c^2~t^2)^{3/2}}$ $a =\frac{c^2b^2+c^4~t^2-c^4~t^2}{(b^2+c^2~t^2)^{3/2}}$ $a =\frac{c^2b^2}{(b^2+c^2~t^2)^{3/2}}$ (b) $v = \frac{2c^2~t}{2\sqrt{b^2+c^2~t^2}} \gt 0~~$ when $t\gt 0$ $a =\frac{c^2b^2}{(b^2+c^2~t^2)^{3/2}} \gt 0~~$ for all $t$ Since both the velocity and the acceleration are positive for all $t$ such that $t\gt 0$, the particle always moves in the positive direction.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.