Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 271: 90

Answer

(a) $\lim\limits_{t \to \infty}C(t) = 0$ (b) $C'(t) = K(be^{-bt}-ae^{-at})$ (c) $C'(t) = 0~~$ when $~~t = \frac{ln(b)-ln(a)}{b-a}$

Work Step by Step

(a) $C(t) = K(e^{-at}-e^{-bt})$ $\lim\limits_{t \to \infty}C(t)$ $= \lim\limits_{t \to \infty}K(e^{-at}-e^{-bt})$ $= \lim\limits_{t \to \infty}K(\frac{1}{e^{at}}-\frac{1}{e^{bt}})$ $= K(0-0)$ $= 0$ (b) $C(t) = K(e^{-at}-e^{-bt})$ $C'(t) = K(-ae^{-at}+be^{-bt})$ $C'(t) = K(be^{-bt}-ae^{-at})$ (c) $C'(t) = K(be^{-bt}-ae^{-at}) = 0$ $K(be^{-bt}-ae^{-at}) = 0$ $be^{-bt}= ae^{-at}$ $ln(be^{-bt})= ln(ae^{-at})$ $ln(b)+ln(e^{-bt})= ln(a)+ln(e^{-at})$ $ln(b)-bt= ln(a)-at$ $bt-at = ln(b)-ln(a)$ $t(b-a) = ln(b)-ln(a)$ $t = \frac{ln(b)-ln(a)}{b-a}$ $C'(t) = 0~~$ when $~~t = \frac{ln(b)-ln(a)}{b-a}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.