Answer
$h'(x) = (4~cos~4x)\cdot f'(g(sin~4x))\cdot g'(sin~4x)$
Work Step by Step
$h(x) = f(g(sin~4x))$
$h'(x) = f'(g(sin~4x))\cdot \frac{d}{dx}(g(sin~4x))$
$h'(x) = f'(g(sin~4x))\cdot g'(sin~4x)\frac{d}{dx}(sin~4x)$
$h'(x) = (4~cos~4x)\cdot f'(g(sin~4x))\cdot g'(sin~4x)$