Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 271: 83

Answer

$h'(x) = \frac{[f(x)]^2g'(x)+f'(x)[g(x)]^2}{[f(x)+g(x)]^2}$

Work Step by Step

$h(x) = \frac{f(x)g(x)}{f(x)+g(x)}$ $h'(x) = \frac{[f'(x)g(x)+f(x)g'(x)]\cdot [f(x)+g(x)]-f(x)g(x)\cdot [f'(x)+g'(x)]}{[f(x)+g(x)]^2}$ $h'(x) = \frac{[f(x)f'(x)g(x)+f(x)f(x)g'(x)+g(x)f'(x)g(x)+g(x)f(x)g'(x)]-[f(x)g(x)f'(x) +f(x)g(x)g'(x)]}{[f(x)+g(x)]^2}$ $h'(x) = \frac{[f(x)f(x)g'(x)+g(x)f'(x)g(x)]}{[f(x)+g(x)]^2}$ $h'(x) = \frac{[f(x)]^2g'(x)+f'(x)[g(x)]^2}{[f(x)+g(x)]^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.